3.4.71 \(\int \frac {x^3 (d+e x)^n}{(a+c x^2)^2} \, dx\) [371]

3.4.71.1 Optimal result
3.4.71.2 Mathematica [A] (verified)
3.4.71.3 Rubi [A] (verified)
3.4.71.4 Maple [F]
3.4.71.5 Fricas [F]
3.4.71.6 Sympy [F(-1)]
3.4.71.7 Maxima [F]
3.4.71.8 Giac [F]
3.4.71.9 Mupad [F(-1)]

3.4.71.1 Optimal result

Integrand size = 20, antiderivative size = 297 \[ \int \frac {x^3 (d+e x)^n}{\left (a+c x^2\right )^2} \, dx=\frac {a (d-e x) (d+e x)^{1+n}}{2 c \left (c d^2+a e^2\right ) \left (a+c x^2\right )}+\frac {\left (\sqrt {-a} d e n-\frac {2 c d^2+a e^2 (2+n)}{\sqrt {c}}\right ) (d+e x)^{1+n} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {\sqrt {c} (d+e x)}{\sqrt {c} d-\sqrt {-a} e}\right )}{4 c \left (\sqrt {c} d-\sqrt {-a} e\right ) \left (c d^2+a e^2\right ) (1+n)}-\frac {\left (2 c d^2+\sqrt {-a} \sqrt {c} d e n+a e^2 (2+n)\right ) (d+e x)^{1+n} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}\right )}{4 c^{3/2} \left (\sqrt {c} d+\sqrt {-a} e\right ) \left (c d^2+a e^2\right ) (1+n)} \]

output
1/2*a*(-e*x+d)*(e*x+d)^(1+n)/c/(a*e^2+c*d^2)/(c*x^2+a)+1/4*(e*x+d)^(1+n)*h 
ypergeom([1, 1+n],[2+n],(e*x+d)*c^(1/2)/(-e*(-a)^(1/2)+d*c^(1/2)))*(d*e*n* 
(-a)^(1/2)+(-2*c*d^2-a*e^2*(2+n))/c^(1/2))/c/(a*e^2+c*d^2)/(1+n)/(-e*(-a)^ 
(1/2)+d*c^(1/2))-1/4*(e*x+d)^(1+n)*hypergeom([1, 1+n],[2+n],(e*x+d)*c^(1/2 
)/(e*(-a)^(1/2)+d*c^(1/2)))*(2*c*d^2+a*e^2*(2+n)+d*e*n*(-a)^(1/2)*c^(1/2)) 
/c^(3/2)/(a*e^2+c*d^2)/(1+n)/(e*(-a)^(1/2)+d*c^(1/2))
 
3.4.71.2 Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 247, normalized size of antiderivative = 0.83 \[ \int \frac {x^3 (d+e x)^n}{\left (a+c x^2\right )^2} \, dx=-\frac {(d+e x)^{1+n} \left (\frac {2 a \sqrt {c} (-d+e x)}{a+c x^2}+\frac {\left (2 c d^2-\sqrt {-a} \sqrt {c} d e n+a e^2 (2+n)\right ) \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {\sqrt {c} (d+e x)}{\sqrt {c} d-\sqrt {-a} e}\right )}{\left (\sqrt {c} d-\sqrt {-a} e\right ) (1+n)}+\frac {\left (2 c d^2+\sqrt {-a} \sqrt {c} d e n+a e^2 (2+n)\right ) \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}\right )}{\left (\sqrt {c} d+\sqrt {-a} e\right ) (1+n)}\right )}{4 c^{3/2} \left (c d^2+a e^2\right )} \]

input
Integrate[(x^3*(d + e*x)^n)/(a + c*x^2)^2,x]
 
output
-1/4*((d + e*x)^(1 + n)*((2*a*Sqrt[c]*(-d + e*x))/(a + c*x^2) + ((2*c*d^2 
- Sqrt[-a]*Sqrt[c]*d*e*n + a*e^2*(2 + n))*Hypergeometric2F1[1, 1 + n, 2 + 
n, (Sqrt[c]*(d + e*x))/(Sqrt[c]*d - Sqrt[-a]*e)])/((Sqrt[c]*d - Sqrt[-a]*e 
)*(1 + n)) + ((2*c*d^2 + Sqrt[-a]*Sqrt[c]*d*e*n + a*e^2*(2 + n))*Hypergeom 
etric2F1[1, 1 + n, 2 + n, (Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)])/( 
(Sqrt[c]*d + Sqrt[-a]*e)*(1 + n))))/(c^(3/2)*(c*d^2 + a*e^2))
 
3.4.71.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 292, normalized size of antiderivative = 0.98, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {602, 27, 657, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 (d+e x)^n}{\left (a+c x^2\right )^2} \, dx\)

\(\Big \downarrow \) 602

\(\displaystyle \frac {a (d-e x) (d+e x)^{n+1}}{2 c \left (a+c x^2\right ) \left (a e^2+c d^2\right )}-\frac {\int \frac {a (d+e x)^n \left (a d e n-\left (2 c d^2+a e^2 (n+2)\right ) x\right )}{c \left (c x^2+a\right )}dx}{2 a \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a (d-e x) (d+e x)^{n+1}}{2 c \left (a+c x^2\right ) \left (a e^2+c d^2\right )}-\frac {\int \frac {(d+e x)^n \left (a d e n-\left (2 c d^2+a e^2 (n+2)\right ) x\right )}{c x^2+a}dx}{2 c \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 657

\(\displaystyle \frac {a (d-e x) (d+e x)^{n+1}}{2 c \left (a+c x^2\right ) \left (a e^2+c d^2\right )}-\frac {\int \left (\frac {\left (\sqrt {-a} a d e n-\frac {a \left (-2 c d^2-a e^2 (n+2)\right )}{\sqrt {c}}\right ) (d+e x)^n}{2 a \left (\sqrt {-a}-\sqrt {c} x\right )}+\frac {\left (\sqrt {-a} a d e n+\frac {a \left (-2 c d^2-a e^2 (n+2)\right )}{\sqrt {c}}\right ) (d+e x)^n}{2 a \left (\sqrt {c} x+\sqrt {-a}\right )}\right )dx}{2 c \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {a (d-e x) (d+e x)^{n+1}}{2 c \left (a+c x^2\right ) \left (a e^2+c d^2\right )}-\frac {\frac {(d+e x)^{n+1} \left (-\sqrt {-a} \sqrt {c} d e n+a e^2 (n+2)+2 c d^2\right ) \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {\sqrt {c} (d+e x)}{\sqrt {c} d-\sqrt {-a} e}\right )}{2 \sqrt {c} (n+1) \left (\sqrt {c} d-\sqrt {-a} e\right )}+\frac {(d+e x)^{n+1} \left (\sqrt {-a} \sqrt {c} d e n+a e^2 (n+2)+2 c d^2\right ) \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}\right )}{2 \sqrt {c} (n+1) \left (\sqrt {-a} e+\sqrt {c} d\right )}}{2 c \left (a e^2+c d^2\right )}\)

input
Int[(x^3*(d + e*x)^n)/(a + c*x^2)^2,x]
 
output
(a*(d - e*x)*(d + e*x)^(1 + n))/(2*c*(c*d^2 + a*e^2)*(a + c*x^2)) - (((2*c 
*d^2 - Sqrt[-a]*Sqrt[c]*d*e*n + a*e^2*(2 + n))*(d + e*x)^(1 + n)*Hypergeom 
etric2F1[1, 1 + n, 2 + n, (Sqrt[c]*(d + e*x))/(Sqrt[c]*d - Sqrt[-a]*e)])/( 
2*Sqrt[c]*(Sqrt[c]*d - Sqrt[-a]*e)*(1 + n)) + ((2*c*d^2 + Sqrt[-a]*Sqrt[c] 
*d*e*n + a*e^2*(2 + n))*(d + e*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + 
n, (Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)])/(2*Sqrt[c]*(Sqrt[c]*d + 
Sqrt[-a]*e)*(1 + n)))/(2*c*(c*d^2 + a*e^2))
 

3.4.71.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 602
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> With[{Qx = PolynomialQuotient[x^m, a + b*x^2, x], e = Coeff[Polynomia 
lRemainder[x^m, a + b*x^2, x], x, 0], f = Coeff[PolynomialRemainder[x^m, a 
+ b*x^2, x], x, 1]}, Simp[(-(c + d*x)^(n + 1))*(a + b*x^2)^(p + 1)*((a*(d*e 
 - c*f) + (b*c*e + a*d*f)*x)/(2*a*(p + 1)*(b*c^2 + a*d^2))), x] + Simp[1/(2 
*a*(p + 1)*(b*c^2 + a*d^2))   Int[(c + d*x)^n*(a + b*x^2)^(p + 1)*ExpandToS 
um[2*a*(p + 1)*(b*c^2 + a*d^2)*Qx + e*(b*c^2*(2*p + 3) + a*d^2*(n + 2*p + 3 
)) - a*c*d*f*n + d*(b*c*e + a*d*f)*(n + 2*p + 4)*x, x], x], x]] /; FreeQ[{a 
, b, c, d, n}, x] && IGtQ[m, 1] && LtQ[p, -1] && NeQ[b*c^2 + a*d^2, 0]
 

rule 657
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_) + (c_.)*( 
x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*((f + g*x)^n/(a + c*x^ 
2)), x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && IntegersQ[n]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.4.71.4 Maple [F]

\[\int \frac {x^{3} \left (e x +d \right )^{n}}{\left (c \,x^{2}+a \right )^{2}}d x\]

input
int(x^3*(e*x+d)^n/(c*x^2+a)^2,x)
 
output
int(x^3*(e*x+d)^n/(c*x^2+a)^2,x)
 
3.4.71.5 Fricas [F]

\[ \int \frac {x^3 (d+e x)^n}{\left (a+c x^2\right )^2} \, dx=\int { \frac {{\left (e x + d\right )}^{n} x^{3}}{{\left (c x^{2} + a\right )}^{2}} \,d x } \]

input
integrate(x^3*(e*x+d)^n/(c*x^2+a)^2,x, algorithm="fricas")
 
output
integral((e*x + d)^n*x^3/(c^2*x^4 + 2*a*c*x^2 + a^2), x)
 
3.4.71.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 (d+e x)^n}{\left (a+c x^2\right )^2} \, dx=\text {Timed out} \]

input
integrate(x**3*(e*x+d)**n/(c*x**2+a)**2,x)
 
output
Timed out
 
3.4.71.7 Maxima [F]

\[ \int \frac {x^3 (d+e x)^n}{\left (a+c x^2\right )^2} \, dx=\int { \frac {{\left (e x + d\right )}^{n} x^{3}}{{\left (c x^{2} + a\right )}^{2}} \,d x } \]

input
integrate(x^3*(e*x+d)^n/(c*x^2+a)^2,x, algorithm="maxima")
 
output
integrate((e*x + d)^n*x^3/(c*x^2 + a)^2, x)
 
3.4.71.8 Giac [F]

\[ \int \frac {x^3 (d+e x)^n}{\left (a+c x^2\right )^2} \, dx=\int { \frac {{\left (e x + d\right )}^{n} x^{3}}{{\left (c x^{2} + a\right )}^{2}} \,d x } \]

input
integrate(x^3*(e*x+d)^n/(c*x^2+a)^2,x, algorithm="giac")
 
output
integrate((e*x + d)^n*x^3/(c*x^2 + a)^2, x)
 
3.4.71.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 (d+e x)^n}{\left (a+c x^2\right )^2} \, dx=\int \frac {x^3\,{\left (d+e\,x\right )}^n}{{\left (c\,x^2+a\right )}^2} \,d x \]

input
int((x^3*(d + e*x)^n)/(a + c*x^2)^2,x)
 
output
int((x^3*(d + e*x)^n)/(a + c*x^2)^2, x)